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The new way of sensitive, accurate, simultaneous profiling of major small RNA classes

Highlights

= Simultaneously profile the major small RNA classes: miRNA,
pre-miRNA, tRNA, tsRNA, and snoRNA.

= Raise the bar of small RNA profiling to high sensitivity, specifici-

ty and accuracy by direct end-labeling and smart probe design.

= Direct and simplified procedures to overcome biases from RNA
modifications, RNA fold hindrance, reverse transcription blocks,

PCR amplifications, and analysis inaccuracy in small RNA-seq.

= Required RNA sample amounts starting as low as 100 ng,

opening up many research opportunities.

= Tolerant for RNA samples at lower qualities: e.g. degraded RNAs,
serum/plasma/biofluid RNAs, FFPE RNAs.

Arraystar Small RNA Array combines direct end-labeling and smart
probe design microarray technologies to simultaneously detect
and quantify small RNAs including miRNAs, pre-miRNAs, tsRNAs,
tRNAs and snoRNAs on the same array, providing vital expressional
information to study the regulatory functions and biomarker

potentials of the small RNAs.

- Biomarker potentials

Small RNAs such as microRNAs have been popularly explored as
biomarkers. tRNA and tsRNA populations are now emerging as new
classes of biomarkers with greater potentials, owing to their many
desired characteristics. The high stability and abundance of tRNA
and tsRNA in body fluids (Fig. 1)[1-6] , the involvement in pathologi-
cal processes, the demonstrated differential expression in solid
tumors and hematological malignancies, and their power to

discriminate cancer patients from healthy controls open the

prospect for devel

tests. For example

opment of tRNAs and tsRNA-based biomarker

, the tRF profiles have been shown to discrimi-

nate triple-negative, triple positive breast cancer cells from the

normal controls in unsupervised clustering [7] (Fig. 2). The ratio

of tsRNAs has als

o been demonstrated as a good indicator of

cancer progression-free survival and a candidate prognostic

marker [4].
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Figure 2. tRF profiles

discriminate triple- positive (Left), triple-negative breast

cancer cells (Right) from the normal controls in unsupervised clustering[7].




Arraystar Small RNA Array, with the low requirements of RNA amount
and quality, opens up opportunities for tRNA/tsRNA biomarker

research projects where the samples are rare or of limited supply.

The Challenges of Small RNA
Profiling by Sequencing

Small RNA-seq has been used for profiling microRNAs and other
small RNAs. However, the use of small RNA-seq data to quantify the
relative abundances of small RNAs has been inconsistent with gPCR
and Northern Blot results. For example, the level of miR-143 was
measured 40 times higher than miR-145 by small RNA-seq, yet their
expression levels were equivalent as measured by gPCR or Northern
Blot [8-10]. The inaccuracy by small RNA-seq is primarily due to the
biases in small RNA-seq library preparation and data analysis [11,
12], which can lead to compromised or misleading results, in some

cases by as much as 10,000-fold off the true abundance [13-18].

- Interference from RNA modifications

Small RNA modifications (e.g. m1A, m3C and m1G) block reverse
transcription and abort ¢cDNA copying, causing sequence biases
toward the priming end and failures in building unskewed full length
representation in the library. For example, due to the presence of
m1A modification in the TUC loop region, small RNA-seq often identi-
fies 18-nt 3’ tsRNAs but misses the more predominant 22-nt isoforms

as detected by Northern Blot.

- Library amplification biases

To produce sufficient cDNA amount for sequencing instrument
loading, small RNA-seq requires PCR amplification of the library [19].
However, RNA G/C content, sequence contexts, secondary structures,
RNA lengths and priming, and reaction conditions can lead to biases
and distortions in the PCR products. That is, when different
templates in the transcriptome are amplified together in the PCR
reaction, preferential or refractory amplifications for the templates
invariably lead to the loss of faithful representation of RNA

abundances [20]. Therefore, quantification by small RNA-seq, which
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requires multiple PCR amplification rounds, is never absolute and

necessitates the use of an orthogonal method for validation.

- Biases caused by TPM in small RNA-seq data analysis
Reads Per Million reads (TPM) is commonly used in small RNA-seq to
represent the relative abundance of a small RNA transcript simply

normalized to 1 million small RNAs being sequenced.

However, as illustrated in (Fig. 3)[11], a change in one RNA abundance
level can adjust the TPM values for all other RNAs, even though the
actual absolute abundance levels of the other RNAs are not changed.
Therefore, TPM is dependent on the composition of the RNA popula-
tion in a sample. A few very highly expressed genes can skew the
distribution of TPM expression values. In fact, small RNA repertoires
do change substantially under many experimental conditions or
across datasets in different studies, compromising TPM to compare

small RNA levels between/among samples [21,22].
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0 RPM

Figure 3. In this simulated situation of miRNA-seq results, except for the *RNA,
all other miRNAs between Baseline and Experiment conditions are
unchanged. However, the increase of only one *RNA abundance by 2-fold
under Experiment condition will simultaneously depress the TPMs for all
other miRNAs, even though their actual absolute expression levels are not
changed [11].
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- High demand of sample amount

For tRNA and tsRNA sequencing, 5 ug or even 100 ug total RNA is
required for target RNA isolation and pretreatments prior to library
construction [24], which precludes research projects with limited

sample amount availability.

The Solutions of Small RNA Profiling

Arraystar Small RNA Array, combining direct end-labeling and
smart probe design microarray technologies, is designed as a
practical and effective solution to overcome these challenges to
profile the full spectrum of small RNAs at high sensitivity and

accuracy yet at much less input RNA amounts.

- Raising the bar of small RNA profiling for high
sensitivity, specificity and accuracy

By end-direct labeling, the small RNAs are ligated with pCp-Cy3
onto the 3’ -ends by T4 RNA ligase, and one RNA molecule s labeled
with one Cy3 label. This method eliminates biases from cDNA
synthesis by reverse transcription due to RNA modification interfer-
ence and RNA folding hindrance as in small RNA-seq; avoids distor-
tions from PCR amplification cycles as in required small RNA-seq
library amplification; uses DMSO to reduce the RNA structure and
sequence context differences among small RNAs. All these help to
preserve the fidelity of native small RNA levels and achieve the
unbiased high quantification accuracy better than RNA-seq or even

qPCR.

The smart probe design incorporates 5’ -hairpin structure and
normalized sequence targeting region to specifically distinguish
smallRNAs with only 1~2 nucleotide differences. Moreover, the high
affinity probe hybridization ensures very high sensitivity even for

small RNAs at low abundance.

- Low RNA sample amount requirements

Arraystar Small RNA Microarray requires as little as 100 ng total
RNA, which is magnitudes lower than what small RNA-seq requires.
As its direct end labeling chemistry does not require RNA pretreat-

ments that often cause RNA loss, the microarray significantly reduc-

es the demand for input RNA amounts especially for heavily
modified RNA biotypes (e.g. tRNA and tsRNA). The low sample
amount requirement opens up opportunities for research projects

where the samples are rare or of limited supply.

- Tolerant for RNA samples at lower qualities

The direct end-labeling is relatively insensitive to nucleotide
damage in the substrate RNA sequence as it does not rely on cDNA
copying by reverse transcription. Furthermore, whereas the
microarray probes are unaffected by unrelated sequence
presence, RNA fragments from the abundant rRNAs in degraded
RNA samples can contaminate small RNAs in the size range,

depressing small RNA coverage in small RNA-seq.

For these reasons, Small RNA Array is particularly advantageous
for preserved or chemically treated samples or degraded samples.

e.g. serum/plasma/biofluid/FFPE RNAs.

- Simultaneous profiling of multiple small RNA classes

Profiling different small RNA classes by sequencing requires
separate sequencing methods and experiments: miRNA-seq,
tRNA-seq, tsRNA-seq, and regular RNA-seq for longer snoRNA and
small RNA precursors. Arraystar Small RNA microarrays use unified
labeling chemistry to hybridize to the probes in one array for all

major small RNA classes.

Total probes Mouse

Total probes 14,707 14,895

miRNAs 2,627 (1,318 5-p-miRNAs;  1,949(966 5-p-miRNAs;
1,309 3-p-miRNAs) 983 3-p-miRNAs)

tsRNAs 4,254 1,809

pre-miRNAs 1,745 1,122

mature tRNAs 346 270

snoRNAs 955 1,323

miRNA: miRBase

tsRNA: tRFdb, MINTbase, GtRNADb
pre-miRNA: miRBase

tRNA: GtRNADb, ENSEMBL
snoRNA: ENSEMBL

Scientific publications

Small RNA sources

Array Format 8x 15K




Rich Small RNA Analyses and Annotations

For each small RNA class, the data analyses include profiling measure-
ment values, statistical computations, informative annotations, and

publication quality graphics.

- Differential expression analysis (tsRNA and tRNA as
examples)

sRNA
tsRNA_type tsRNA-sequence tsRNA-length tsRNA-precursor Level Molecular mechanism
ATTCAAAGGTTCCGGGTTCG
3'tiRNA 39 tRNA-Arg-TCT-1 Potential Cytotoxicity to neurons
AGTCCCGGCGGAGTCGCCA
ATGCCGAGGTTGTGAGTTCA
3'tiRNA 39 tRNA-lle-TAT-3 Potential Cytotoxicity to neurons
AGCCTCACCTGGAGCACCA

tsRNA_type: tsRNA type (tRF-5, tRF-3, tRF-1, 5-Leader, 5-tiRNA, 3-tiRNA,
and i-tRF).

tsRNA-sequence: tsRNA sequence.

tsRNA-length: tsRNA length.

tsRNA-precursor: Symbol for the tsRNA precursor.

Level: Confidence level for the tsRNA

-Functional - Documented with characterized biological functions or
disease association;

-Reliable - Recorded in tRFdb or reported by literatures, but without
further studies;

-Potential - Predicted by Arraystar based on RNA fragment lengths and
cleavage positions in the tRNA.

Mechanism: The molecular mechanism of tsRNA.

tRNA

tRNA promoter

tRNA-Sequence Gene name Genomelocus pre-tRNA locus | tRNA neighbouring gene

locus

GGGGGTATAGC chr6:2879596 chr6:28795963- | chr6:28795952-

tRNA-Ala-AGC-1-1 XXbac-BPG308K3.5

TCAG... ... 3-28796035:- 28796135:- 28796135:-

GGGGAATTAGC chr6:2668725 | chr6:26687156- | chr6:26687156-

tRNA-Ala-AGC-10-1 RP11-457M11.7

TCAA... ... 6-26687329:+

26687329+ 26687342:+

Sequence: Sequence of the tRNA isodecoder.

Gene name: Gene name of the isodecoder tRNA.

GenomelLocus: Genome locus of the tRNA isodecoder.

tRNA promoter Locus: Genome locus of the tRNA isodecoder promot-
er. tRNA promoter - tRNA promoters which include a tRNA gene plus 100
base pairs of upstream sequence. (PMC6108506).

pre-tRNA locus: Genome locus of the tRNA isodecoder precursor.
pre-tRNA - precursor tRNA which include a tRNA gene plus 100 base
pairs of upstream sequence and a 3'trailer.

tRNA neighboring gene: The nearest gene name of the tRNA isodecoder.
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- Hierarchical clustering
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Figure 4. Hierarchical clustering heatmap of differentially expressed miRNAs.
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